IX Міжнародна науково-технічна конференція. Нові матеріали і технології в машинобудуванні-2017

слого аніліну. В процесі тверднення бетону проходить кальматація (заповнення) пор фурилоаніліновою смолою. Полімербетон водостійкий при надлишкових тисках до 5,0 МПа, бензостійкий – до 1,5 МПа, міцність його на 40% вища, ніж у звичайного бетону. Він може використовуватися для будування сховищ світлих нафтопродуктів, для цементації нафтових і газових свердловин і т. п. [2].

Література:

1. Конструкционные материалы. Справочник. Арзамасов Б.Н., Брострем В.А., Буше Н.А. и др. М.: Машиностроение, 1990. – 688 с.

2. Катаев В.М., Попов В.А., Сажин Б.И. (ред.) Справочник по пластическим массам. – Том 2, 1975. – 568 с.

Самарай В.П., Самарай Р.В., Богушевський В.С. (КПІ ім. Ігоря Сікорського, м. Київ) ПОРІВНЯННЯ І ВИБІР ПЕРЕДАВАЛЬНИХ ФУНКЦІЙ "ТЕМПЕРАТУРА ПРЕС-ФОРМИ" ЛИТТЯ ПІД ТИСКОМ

За кривою розгону виконано розрахунок різних можливих передавальних функцій (ПФ) "Температура прес-форми" лиття під тиском (ЛПТ) для машини ЛПТ 711A08 і порівняння адекватності форми їх кривих та достовірності апроксимації за допомогою програми МатЛаб (рис. 1). Для ідентифікації об'єкту керування використовувалися підсистема ідентифікації та моделювання кривих розгону "System Identification Tool" та підсистема аналізу та моделювання систем автоматичного керування "LTI-Viewer" пакету "CON-TROL SYSTEM TOOLBOX".

Рис. 1. Порівняння графічних зображень та сортування передавальних функцій за їх адекватністю повторення залежності між вхідним та вихідним сигналами для об'єкта керування – контуру машини ЛПТ "Температура ПФ"

IX Міжнародна науково-технічна конференція. Нові матеріали і технології в машинобудуванні-2017

Було досліджено і проведено порівняння адекватності математичних моделей п'яти груп для 15 передавальних функцій контуру машини ЛПТ "Температура ПФ":

- 1. Без нулів і без інтегральної ланки 1, 2, 3 порядків.
- 2. З нулями і без інтегральної ланки 1, 2, 3 порядків.
- 3. З нулями та з інтегральною ланкою 1, 2, 3 порядків.
- 4. Без нулів з інтегральною ланкою 1, 2, 3 порядків.
- 5. Без запізнення 1, 2, 3 порядків.

Таблиця 1 – Порівняння адекватності передавальних функцій "Температура ПФ"

	Форма представлення	Порядок передатної	Коефі-	Досто-	Позна-
	об'єкта керування	функції	цієнти	B1p-	чення
			ΠФ	ність, %. А лекрат-	
				Hicть R ²	
1	ОК з нулями з полю-	3-порядку 1+Тz*s	Kp = -107.23	89.68	P3DIZ
1		G(s) = Kp * exp(-Td*s)	Tp1=0.005750	Так	1 JDIE
		s(1+Tp1*s)(1+Tp2*s)(1+Tp3*s)	Tp2=0.023036 Tp3=0.036066	Tuk	
	Ланкою		Td= 0.29666		
2			Tz = -1.8685 Kn = -21017	00.70	DIDIZ
2	ОК з нулями, з полю-	1-порядку 1+Тz*s	Tp1 = 0.12159	88,79.	PIDIZ
	сами і інтегральною	G(s) = Kp * exp(-Td*s)	Td = 0.3	Так	
	ланкою	s(1+Tp1*s)	120.23075		
3	ОК з полюсами, без	3-порядку	Kp = 207.38	85,98.	P3D
	нулів і без інтеграль-	Кр	Tp1=0.013882 Tp2=0.013882	Так	
	ної ланки	$G(s) = * \exp(-Td*s)$	Tp3=0.015669		
		(1+1p1*s)(1+1p2*s)(1+1p3*s)	Td = 0.3	05.17	D1D7
4	ОК з полюсами, з ну-	1-порядку 1+Та*s	Tp1=0.049424	85,17.	PIDZ
	лями 1 без інтеграль-	G(s) = Kn * exn(-Td*s)	Td = 0.29319	Так	
	ної ланки	1+Tp1*s	1z = -0.015638		
5	ОК з полюсами, без	1-порядку	Kp =239.29	84.57.	P1D
	нулів і без інтеграль-	Kp	Tp1=0.052387 Td=0.3	Так	
	ної панки	$G(s) = - * \exp(-Td*s)$	1u - 0.5		
		1+Tp1*s	$V_{\rm m} = 221.76$		
6	ОК з полюсами, без	2-порядку	Kp = 231.76 Tp1 = 0.03195	83,34.	P2D
	нулів і без інтеграль-	$G(s) = - * \exp(-Td*s)$	Tp2 =	Так	
	ної ланки	(1+Tp1*s)(1+Tp2*s)	0.043709 Td = 0.28247		
7	ОК з полюсами, з ну-	2-порядку	Kp = 19.635	80.93.	P2DIZ
	лями і з інтегральною	1+Tz*s	Tp1=0.082366 Tp2=0.014435	Так	
	панкою	G(s) = Kp * exp(-Td*s)	Td = 0.29971		
		$\frac{s(1+Tp1*s)(1+Tp2*s)}{1}$	Tz = 10.647		DIDI
8	ОК без нулів з полю-	1-порядку Кр	Kp = -4/40.3 Tp1 = 0.83469	76,5.	PIDI
	сами та інтегральною	Kp $G(s) = - * exp(-Td*s)$	Td = 0.3	Так	
	ланкою	s(1+Tp1*s)			
9	ОК з нулями. полюса-	З-порядку	Kp = 552.59	74.32.	P3DZ
-	ми без інтегральної	1+Tz*s	Tp1 = 0.001 Tp2 = 8.1823	Hi	
	панки	$G(s) = Kp^* - * exp(-Td^*s)$	Tp3=0.043429		
	*******	(1+Tp1*s)(1+Tp2*s)(1+Tp3*s)	Td = 0.27934 Tz = 3.5478		
	ОК без запізнення без	2-порялку	Kp = 1200.5	61.68	P7I
10		Kp	Tp1 = 0.17384 Tr2 = 0.17410	ні П	1 41
10	пуль з птогральною	G(s) = s(1+Tp1*s)(1+Tp2*s)	$1p_2 = 0.1/419$	111	
		2.0000000	Kn = 187.22	60.95	D1D7
11	ОК З НУЛЯМИ, ПОЛЮСА-	2-порядку 1+Т7*s	Tp1=0.058828	00,85.	P2DZ
11	ми оез інтегральної	G(s) = Kp * exp(-Td*s)	Tp2=0.044885 Td=0.17022	H1	
	ланки	(1+Tp1*s)(1+Tp2*s)	$T_z = -$		
			0.080317		

IX Міжнародна науково-технічна конференція. Нові матеріали і технології в машинобудуванні-2017

12	ОК без нулів, без запі- знення з інтегральною ланкою	3-порядку Кр G(s)= s(1+Tp1*s)(1+Tp2*s)(1+Tp3* s)	Kp = 8.5867e+006 Tp1=0.019534 Tp2 = 3826.1 Tp3=0.019559	59,84. Hi	P3I
13	ОК без нулів, без запі- знення з інтегральною ланкою	1-порядку Кр G(s) = s(1+Tp1*s)	Kp = 1.3061e+011 Tp1 = 6.8797e+007	57,98. Hi	P1I
14	ОК без нулів з полю- сами та інтегральною ланкою	2-порядку Кр G(s)= * exp(-Td*s) s(1+Tp1*s)(1+Tp2*s)	Kp = 640.69 Tp1 = 0.028516 Tp2 = 0.028852 Td = 0.12144	57,95. Hi	P2DI
15	ОК без нулів з полю- сами та інтегральною ланкою	3-порядку Кр G(s) = * exp(-Td*s) s(1+Tp1*s)(1+Tp2*s)(1+Tp3* s)	Kp = 132.63 Tp1 = 0.001 Tp2 = 0.001 Tp3 = 0.001 Td = 0	17,32. Hi	P3DI

Рис. 2. Порівняння графічних зображень передавальних функцій об'єкта керування контуру "Температура ПФ" з кривою розгону для P3DIZ – ОК з нулями, з запізненням і інтегральною ланкою

Результат аналізу показує наступне:

1. Об'єкт керування обов'язково має описуватися ланкою запізнення.

2. Найкращим чином контур "Температура ПФ" відображається передавальною функцією 1-го порядку з нулями та інтегральною ланкою (R² = 0.90). Але така ПФ складна навіть для моделювання у програмі МатЛаб, тим більше для реалізації мікроконтролерної програми керування об'єктом.

3. Можливо використання передавальних функцій всіх трьох порядків з нулями та з інтегральною ланкою 1, 2, 3 порядків 3-ої групи.

4. Доцільно використання також найпростіших передавальних функцій без нулів і без інтегральної ланки 1 і 3 порядків 1-ої групи (позиції 5, 6, 3 у таблиці) (R² > 0.75).

5. Перевірка цих ПФ у системі "Lti Viewer" дала позитивні результати.

Рис. 3. Порівняння графічних зображень передавальних функцій об'єкта керування контуру "Температура ПФ" з кривою розгону для моделей передавальних функцій типу P1D, P2D, P3D (ОК без нулів, з запізненням і без інтегральної ланки)

Самарай В.П., Самарай Р.В., Богушевський В.С. *(КПІ ім. Ігоря Сікорського, м. Київ)* ПОРІВНЯННЯ І ВИБІР ПЕРЕДАВАЛЬНИХ ФУНКЦІЙ "ТИСК ПРЕСУВАННЯ" ЛИТТЯ ПІД ТИСКОМ

За кривою розгону виконано розрахунок різних можливих передавальних функцій (ПФ) "Тиск пресування робочої рідини у штоковій порожнині циліндра" лиття під тиском (ЛПТ) для машини ЛПТ 711A08 і порівняння адекватності форми їх кривих та достовірності апроксимації за допомогою програми МатЛаб (рис. 1). Для ідентифікації об'єкта керування використовувалися підсистема ідентифікації та моделювання кривих розгону "System Identification Tool" та підсистема аналізу та моделювання систем автоматичного керування "LTI-Viewer" пакету "CONTROL SYSTEM TOOLBOX".

Оброблення кривої розгону тиску робочої рідини у штоковій порожнині циліндра пресування відбувалося згідно ГОСТ 26689-85. Окремо проаналізовано поведінку моделей ПФ 1-3-го порядків протягом всього часу циклу запресовки послідовно для всіх трьох фаз пресування.

На рис. 1 представлено порівняння адекватності форми графіків різних моделей можливих передавальних функцій "Тиск прес-плунжера". Згідно з основним принципом теорії моделювання з п'ятнадцяті можливих моделей ПФ за допомогою пакета МатЛАБ обрано три можливі, найпростіші, достатньо адекватні ПФ за адекватністю форми кривої (рис. 1). Як найбільш адекватну за формою кривої визначено модель ПФ "P2D" (2-го порядку, без нулів, без інтегральної ланки, з запізненням). Дві інші моделі передавальних функцій розраховані без запізнення об'єкта керування і показали меншу точність і адекватність. Достовірність апроксимації (адекватність) теж найбільша у моделі 2-го порядку, що відповідає загальноприйнятим положенням теорії автоматичного керування для такого класу моделей ПФ.