МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КПІ"

ІНЖЕНЕРНО-ФІЗИЧНИЙ ФАКУЛЬТЕТ

НОВІ МАТЕРІАЛИ І ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ

МАТЕРІАЛИ

VIII Міжнародної науково-технічної конференції

Україна, Київ 2016

Хитько А.Ю., Шапран Л.А., Иванова Л.Х.

(НМетАУ, г. Днепропетровск)

ОПЫТ ЦЕНТРОБЕЖНОГО ЛИТЬЯ БИМЕТАЛЛИЧЕСКИХ ЗАГОТОВОК ДЛЯ РОЛИКОВ МНЛЗ

Актуальным направлением исследований является разработка составных роликов для зоны вторичного охлаждения МНЛЗ с биметаллическими центробежнолитыми бочками с повышенной жаропрочностью, абразивной и коррозионной стойкостью.

Условия работы роликов в зоне вторичного охлаждения МНЛЗ характеризуются: малой скоростью вращения (до 1 об/мин), значительными и переменными термическими и механическими нагрузками, интенсивным абразивным и гидроэрозионным износом, ударами при прохождении холодного конца заготовки. Максимальная температура поверхности роликов достигает 550 °C, перепад температуры по сечению до 470 °C, по длине – 220 °C. В итоге в роликах развиваются сетка разгара, кольцевые трещины, износ поверхности или происходит налипание материала заготовки на поверхность роликов. Все перечисленные повреждения могут значительно сокращать срок службы роликов, а, следовательно, и снижать межремонтный срок работы МНЛЗ.

Повышение ресурса работы роликов достигается совершенствованием их конструкции и выбора материала, устойчивого к абразивному износу, коррозионному и термическому разрушению в условиях контакта с горячим слябом, наружным и внутренним охлаждением водой.

Анализ условий работы и видов дефектов роликов различных секций зоны вторичного охлаждения криволинейной МНЛЗ показал, что с удалением от кристаллизатора уменьшаются температурные и возрастают механические нагрузки на ролики. В соответствии с изменением температуры сляба по длине технологической линии МНЛЗ, служебные свойства материала роликов должны подбираться дифференцированно. У роликов, ближайших к кристаллизатору секций, основным видом износа является образование кольцевых трещин и налипание, следовательно, преимущественное внимание должно уделяться термостойкости материала. По мере снижения температуры сляба большее развитие приобретает абразивный износ поверхности.

Оптимальное сочетание служебных свойств может быть достигнуто при изготовлении роликов из нескольких сплавов, в частности, составными.

Для рабочего слоя роликов целесообразно применять материалы с высоким сопротивлением термическому, абразивному и коррозионному разрушению, а для внутреннего — несущего слоя — материалы, обеспечивающие высокую конструкционную прочность ролика.

При выборе химического состава стали рабочего слоя роликов, определении структурного класса стали ставились следующие основные задачи:

- получение структуры, стабильной в зоне рабочих температур поверхности ролика при длительной эксплуатации;
- отсутствие фазовых превращений при рабочих температурах, что гарантирует низкую склонность к налипанию материала сляба;
- устойчивость свойств при кратковременных нагревах до 700...850 °C, например, при остановке МНЛЗ или отсутствии охлаждения;
 - антикоррозионные свойства;
- сохранение при длительной эксплуатации достаточно высокой твердости, прочности и ударной вязкости.

С учетом предъявленных требований, в качестве базовых сталей для наружного слоя роликов были выбраны: мартенсито-ферритная сталь типа 17X12МФЛ и аустенитная сталь типа 20X25H19C2Л; для внутреннего слоя бочек выбрана сталь 20Л как обладающая хорошей свариваемостью.

Для двух сочетаний сталей: $17X12M\Phi\Pi - 20Л$ и 20X25H19C2Л - 20Л были разработаны геометрические параметры заготовок, обеспечивающие необходимую прочность и жесткость роликов. Они составили $295 \times (37 \div 45) \times 3650$ мм и $330 \times (35 \div 45) \times 3650$ мм

соответственно для роликов диаметром 270 и 300 мм. Геометрические параметры заготовок и требования к ним изложены в ТУ 14-3-1230-83 «Трубы центробежнолитые двухслойные для составных роликов МНЛЗ».

В труболитейном цехе НЮТЗ была отлита опытно-промышленная партия биметаллических заготовок в рассматриваемых сочетаниях сталей двух типоразмеров. Опытно-промышленная партия роликов была установлена в кассеты и испытана вместе с серийными на МНЛЗ металлургического комбината «Азовсталь». Максимальный износ по диаметру бочек опытных роликов составил 0,2...0,4 мм, что в 10...20 раз меньше износа серийных. При визуальном осмотре поверхностных дефектов, налипания на бочках опытных роликов не было, а у сравниваемых серийных роликов имелась сетка разгара и полосчатое налипание.

Христенко В.В., Ушкалова О.В., Кулинич А.А., Захарова А.С. *(НТУУ «КПИ», г. Киев)*ИЗНОСОСТОЙКИЕ ХРОМИСТЫЕ ЧУГУНЫ С ВКЛЮЧЕНИЯМИ ФАЗЫ НА ОСНОВЕ МЕДИ

Результаты теоретического анализа [1...3] свидетельствуют о возможности существования расплавов системы Cu - Fe - Cr - C в виде двух жидких фаз: фазы на основе меди и (Fe - Cr - C) фазы. С практической точки зрения относительно системы Cu - Cr - Fe - C появляется возможность создания износостойких хромистых чугунов, структура которых содержит медные включения. Капли «медной» фазы, распределенные в (Fe - Cr - C) основе (расплаве хромистого чугуна), могут служить препятствиями для роста первичных карбидов при кристаллизации. Это способствует их измельчению и, как следствие, — улучшению обрабатываемости материала резанием. Кроме того, мягкие включения «медной» фазы, распределенные в твердой основе, способны существенно улучшить антифрикционные свойства и износостойкость сплава при трении [4].

Возможность пребывания расплавов системы Cu-Fe-Cr-C в виде двух сосуществующих фаз эмпирически проверяли методами седиментационного анализа и дифференциальной сканирующей калориметрии. Седиментационному анализу подвергали сплав, состоящий из 50% об. хромистого чугуна (16 масс. % Cr и 1,6 масс. % Cr) и 50% об. меди. Установлено, что при температуре 1400 $^{\circ}C$ расплав пребывал в двухфазном состоянии, а при отсутствии перемешивания из-за различия величин удельного веса «медной» и (Fe-Cr-C) фаз происходит его расслоение. Этот вывод также подтверждается результатами исследования микроструктур образцов, полученных всасыванием расплава из донной и верхней частей тигля.

Установлено, что структура образца, полученного методом закалки из жидкого состояния, представляет собой «замороженную эмульсию» с дисперсной фазой, сформированной на основе медной добавки. Также установлено, что в образцах, полученных заливкой расплава в металлический кокиль, коалесценция и седиментация включений дисперсной фазы также не получают заметного развития, поэтому структура «замороженной эмульсии» сохраняется. Следует отметить, что медные включения, распределенные в (Fe-Cr-C) основе, являются препятствием для роста первичных карбидов при кристаллизации хромистого чугуна.

Выводы: экспериментально подтвержден теоретически установленный факт возможности пребывания расплавов системы Cu-Fe-Cr-C в двухфазном состоянии. Эмпирически установлена возможность эмульгирования расплавов указанной системы и получения литых структур типа «замороженная эмульсия». Показано, что наличие медных включений в структуре хромистых чугунов способствует измельчению первичных карбидов.

Литература:

1. Кириевский Б.А., Христенко В.В. О взаимной растворимости и образовании области несмешиваемости металлов в жидком состоянии // Металл и литье Украины, 1999. – \mathbb{N} 01 – 2. – С. 12...15.