МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КПІ"

ІНЖЕНЕРНО-ФІЗИЧНИЙ ФАКУЛЬТЕТ

НОВІ МАТЕРІАЛИ І ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ

МАТЕРІАЛИ

VIII Міжнародної науково-технічної конференції

Україна, Київ 2016 В материале обнаружены микропоры и усадочная рыхлота, единичные оксидные включения размером, не превышающим 20 мкм, а также мелкие включения сферической формы светло-серого цвета (в отдельных случаях с розовыми вкраплениями) размером $\sim 2...4$ мкм, характерные для сложных окислов. Карбиды и карбонитриды методом оптической микроскопии при увеличениях до \times 1000 не обнаружены, что характерно для структуры низкоуглеродистого никелевого сплава ($C \le 0.08\%$).

Микроструктура термически обработанных образцов опытного сплава при температуре 1255 °C характерна для литейных жаропрочных никелевых сплавов с наличием структурной неоднородности. Следов перегрева не обнаружено.

Повышенное содержание эвтектической фазы (γ - γ') и разноразмерность частиц γ' -фазы в осях и междендритных пространствах в опытном сплаве, вероятно, обусловлены проведением термообработки при температуре значи-тельно ниже температуры полного растворения γ' и (γ - γ')-фаз в твердом растворе, а также пониженным содержанием углерода.

Гомогенизация при температуре 1270 °C по режиму предусмотренному для сплава ЖС32-ВИ, не приводит к полному растворению эвтектической (γ - γ')-фазы в γ -твердом растворе, но способствует существенному выравниванию размеров γ' -фазы в осях и междендритных пространствах.

Проведение термообработки при более высокой температуре (1270 °C вместо 1255 °C) не привело к существенному повышению механических и жаропрочных свойств опытного сплава.

Михайловская А.М., Гнатенко О.В., Наумик В.В. (ЗНТУ, г. Запорожье) ОПТИМИЗАЦИЯ СОСТАВА ЖАРОПРОЧНОГО СПЛАВА ЖС32-ВИ НА НИКЕЛЕВОЙ ОСНОВЕ

Высокая стоимость жаропрочных никелевых сплавов, а также их недостаточно удовлетворительные механические свойства вынуждают к поиску решений этих проблем. Рений является основным дорогостоящим элементом, который влияет на способность сплавов противостоять высоким температурам без особых видимых дефектов и разрушений. Разработка надежного, но более дешевого сплава на основе уже известного ЖС32-ВИ даст необходимый экономический эффект.

В вакуумных индукционных электропечах ОКБ-860 и УППФ-3М проводили термовременную обработку расплавов, а на установке типа УВНК-8П были получены отливки и образцы из жаропрочных никелевых сплавов с направленной и монокристаллической макроструктурой.

Опытные образцы получали в два этапа. На первом этапе в вакуумной индукционной печи УППФ-3М в среде аргона под давлением 1,4...5,3 МПа в тиглях с основной футеровкой из опытных сплавов изготовляли слитки весом 10 кг. Заливка металла проводилась при температуре металла 1540 °C в керамические формы, предварительно нагретые до температуры 900 °C. На втором этапе полученные слитки переплавляли и заливали в специальные керамические формы с предварительно установленными в них стартовыми кристаллами («затравками») из бинарного сплава системы (Ni–W) для получения монокристаллических образцов из опытных сплавов.

Изучили влияние увеличения в составе жаропрочного никелевого сплава ЖС3-ВИ содержания тантала от 4,0% до 9,0% при одновременном снижении содержания рения от 4,0% до 1,5% на его свойства. Результаты анализа химического состава приведены в табл. 1.

Результаты механических испытаний на кратковременную прочность образцов с монокристаллической [001] макроструктурой опытных составов № 1...5 и их математической обработки показали, что в опытном составе № 5, содержащем 9% тантала и 1,5% рения, прочностные характеристики заметно снижаются, по сравнению со сплавом

ЖС32-ВИ и опытными сплавами № 1...4. Сплав № 4, содержащий 8% тантала и 2% рения (см. табл. 1) является оптимальным с точки зрения прочностных характеристик и себестоимости.

T ~	1 37	U				
Гаршина	1 — X 141A	ииирскии	COCTAD	СППЯВОВ	опытных	ппарок
таолица .	1 / X / I I V	TH TOOKHH	COCTAB	CHIMADOB	UIIDITIDIA	плавок

Caran Ma	Содержание легирующих элементов, % (по массе)										
Сплав №	С	Cr	Co	W	Mo	Al	Nb	Ta	Re	Zr	В
ЖС32-ВИ	0,15	4,9	9,3	8,2	1,1	5,8	1,6	4,0	4,0	0,05	0,015
1	0,14	5,1	9,1	8,0	1,0	5,9	1,4	5,0	3,5	0,05	0,015
2	0,15	4,9	9,0	8,2	0,9	6,1	1,5	6,0	3,0	0,05	0,015
3	0,14	4,8	8,9	8,1	1,0	6,0	1,6	7,0	2,5	0,05	0,015
4	0,15	5,0	9,0	8,0	0,9	6,1	1,5	8,0	2,0	0,05	0,015
5	0,16	5,2	9,1	7,9	1,1	6,2	1,6	9,0	1,5	0,05	0,015

Литература:

Гнатенко О.В. Разработка оптимального состава экономнолегированного жаропрочного никелевого сплава с повышенной фазовой стабильностью / О.В. Гнатенко, С.В. Гайдук, В.В. Наумик // Неметалеві вкраплення і гази у ливарних сплавах: збірник тез XIII Міжнародноїнауково-технічноїконференції, Запоріжжя, 9...12 жовтня 2012 р. / відп. ред. В.В. Луньов. — Запоріжжя: ЗНТУ, 2012. — С. 106...107.

Могилевцев О.А., Стороженко С.А. *(ДГТУ, г. Днепродзержинск)*ХИМИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ ВДУВАЕМОГО МАГНИЯ С КОМПОНЕНТАМИ ЧУГУНА И ГАЗА-НОСИТЕЛЯ

E-mail: storog69@ukr.net

В работе [1] было показано, что зародыши шаровидного графита (ШГ) в чугуне могут образоваться в результате конденсации («коллапса») мелких пузырьков парообразного Mg. В данной работе выполнен термодинамический анализ химических реакций, которые могут происходить при вдувании диспергированного Mg в чугун, с учетом капиллярного давления в пузырьках.

При испарении вводимого Mg могут образоваться только такие пузырьки, давление в которых меньше упругости насыщенного пара Mg при данной температуре. По расчету, в образовании зародышей ШГ могут принимать участие пузырьки радиусом от 3,8 до 58 мкм, возникшие при температуре 1400 °C.

Расчет констант равновесия химических реакций с использованием данных [2...4] показал, что вводимый Мg расходуется, прежде всего, на практически полное связывание серы и кислорода чугуна. На это уходит около 0,03% Mg. Для сфероидизации графита остаточное содержание Mg должно составлять 0,05%. Таким образом, если магний расходуется только на связывание серы и кислорода, в пузырьке при вводе должно содержаться приблизительно в 1,6 раз больше Mg, чем при коллапсе пузырька. Согласно расчету, пузырьки радиусом меньше 58 мкм сколлапсируют до начала кристаллизации чугуна. Пузырьки большего размера, израсходовав соответствующее количество магния на связывание серы и кислорода, не сколлапсируют и не станут зародышами ШГ.

Если магний вдувается в чугун в струе инертного аргона, то размер пузырька при коллапсе будет таким же, но газовая фаза внутри него включает не только магний, но и аргон. Расчетный радиус пузырьков аргона, оставшихся после конденсации пара магния, не более 24 мкм.

Азот, как газ-носитель, нельзя считать инертным, поскольку он связывает Mg, образуя нитрид Mg_3N_2 . Расчет подтверждает, что эта реакция идет практически до конца. О