МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КПІ"

ІНЖЕНЕРНО-ФІЗИЧНИЙ ФАКУЛЬТЕТ

НОВІ МАТЕРІАЛИ І ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ

МАТЕРІАЛИ

VIII Міжнародної науково-технічної конференції

Україна, Київ 2016

Дорошенко В.С. ¹ , Калюжный П.Б. ² (¹ ФТИМС НАН Украины, г. Киев; ² ВНУ им. В. Даля, г. Северодонецк) УСКОРЕННОЕ ОХЛАЖДЕНИЕ ОТЛИВОК В ПСЕВДООЖИЖЕННОМ СЛОЕ НАПОЛНИТЕЛЯ НЕПОСРЕДСТВЕННО В ЛИТЕЙНОЙ ФОРМЕ
Дорошенко В.С., Шинський І.О. (ФТІМС НАН України, м. Київ) ПРО РОЗРОБКУ НАУКОВИХ ТА ТЕХНОЛОГІЧНИХ ЗАСАД КОНСТРУЮВАННЯ ВИЛИВКІВ, ОПТИМАЛЬНИХ ПРОЦЕСІВ ЇХ ВИРОБНИЦТВА І АВТОМАТИЗОВАНИХ МЕТОДІВ ПРОЕКТУВАННЯ4
Дорошенко В.С., Яковышин О.А. (ФТИМС НАН Украины, г. Киев) ПРЕДПОСЫЛКИ ПРИМЕНЕНИЯ АЦЕТАТА НАТРИЯ («НОТ ICE») В КАЧЕСТВЕ МАТЕРИАЛА РАЗОВЫХ МОДЕЛЕЙ
Дорошенко В.С. (ФТИМС НАН Украины, г. Киев) ФОРМООБРАЗУЮЩИЕ И СВЯЗУЮЩИЕ СВОЙСТВА ВОДЫ ПРИ ЛИТЬЕ ПО ЛЕДЯНЫМ МОДЕЛЯМ4
Дорошенко В.С. (ФТИМС НАН Украины, г. Киев) О ПОДДЕРЖАНИИ БАЛАНСА ДАВЛЕНИЯ ГАЗА У СТЕНКИ ФОРМЫ ДЛЯ ОБЕСПЕЧЕНИЯ КАЧЕСТВА ОТЛИВОК ПРИ ЛГМ4.
Дорошенко В.С. (ФТИМС НАН Украины, г. Киев) СОЧЕТАНИЕ ЛИТЬЯ ПО РАЗОВЫМ МОДЕЛЯМ С ПРИМЕНЕНИЕМ ВЫСОКОПРОЧНЫХ СПЛАВОВ И ОПТИМИЗАЦИЕЙ ТОЛЩИН СТЕНОК ОТЛИВКИ КАК МЕТОД МЕТАЛЛОСБЕРЕЖЕНИЯ4
Доценко Ю.В., Селівьорстов В.Ю., Доценко Н.В. (НМетАУ, м. Дніпропетровськ) ЗАСТОСУВАННЯ КОМПЛЕКСНОЇ ТЕХНОЛОГІЇ З МЕТОЮ ПІДВИЩЕННЯ МЕХАНІЧНИХ ТА ТЕХНОЛОГІЧНИХ ВЛАСТИВОСТЕЙ ВИЛИВКІВ
Дядюн К.В., Чебукина В.Ф. (Херсонский политехнический колледж, м. Херсон) ПРОЦЕСС НАНЕСЕНИЯ ИОННО- ПЛАЗМЕННЫХ ПОКРЫТИЙ И СИСТЕМНЫЙ ПОДХОД К УПРАВЛЕНИЮ ПРОЦЕССОМ4
Жбанова О.М., Хомовська А.О. (ДВНЗ «КНУ», м. Кривий Ріг) ПОКРАЩЕННЯ КОНСТРУКЦІЇ ЛИТОГО КОНТЕЙНЕРА ДЛЯ ЗБЕРІГАННЯ ВІДХОДІВ
Жижкина Н.А., Илюшкин Д.А., Зенцова Е.А. (БГТУ, г. Брянск) КОМПЬЮТЕРНЫЙ АНАЛИЗ ФОРМИРОВАНИЯ ВАЛКОВОЙ ОТЛИВКИ
Затуловский А.С. (ФТИМС НАН Украины, г. Киев) ЦЕНТРОБЕЖНОЕ ЛИТЬЕ АЛЮМОМАТРИЧНЫХ КОМПОЗИТОВ, АРМИРОВАННЫХ ПРОДУКТАМИ РЕЦИКЛИНГА
Захарченко А.В. (Университет «Украина», г. Киев) МОНИТОРИНГ СОСТОЯНИЯ ПОВЕРХНОСТНЫХ СЛОЁВ ТРИБОСОПРЯЖЕНИЙ
Зеленый Б.Г. (ФТИМС НАН Украины, г. Киев) ВЛИЯНИЕ ТЕРМОВРЕМЕННОЙ ОБРАБОТКИ И МОДИФИЦИРОВАНИЯ НА ГАЗОНАСЫЩЕННОСТЬ ЧУГУНА
Золотоверх В.А. ¹ , Микитчик А.В. ² , Рудой Ю.Е. ² (¹НТУУ «КПІ», м. Київ; ²МЦ ЕПТ ІЕЗ ім. Є.О. Патона, м. Київ) ДОСЛІДЖЕННЯ СТРУКТУРИ ТА ВЛАСТИВОСТЕЙ ДИФУЗІЙНОГО БАР'ЄРНОГО ШАРУ В ЖАРОСТІЙКОМУ ПОКРИТТІ NіAI, ОТРИМАНОМУ ПО ОДНОСТАДІЙНІЙ ЕЛЕКТРОННО-ПРОМЕНЕВІЙ ТЕХНОЛОГІЇ
Идрис Г.Г., Акимов О.В., Марченко А.П. (НТУ «ХПИ», г. Харьков) КОМПЛЕКСНОЕ КОМПЬЮТЕРНО- ИНТЕГРИРОВАННОЕ ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИИ ЛИТЬЯ ПОРШНЕЙ
Исаева Л.Е. (НМетАУ, г. Днепропетровск) ИССЛЕДОВАНИЕ УСЛОВИЙ ОБРАЗОВАНИЯ НИТРИДНЫХ ФАЗ В КАВИТАЦИОННОСТОЙКИХ СТАЛЯХ АУСТЕНИТНОГО КЛАССА
Іванов В.Г., Пірожкова В.П. (ЗНТУ, м. Запоріжжя) БУДОВА ГРАФІТОВИХ ВКРАПЛЕНЬ У ВИСОКОМІЦНИХ ЧАВУНАХ
Іванова Л.Х., Білий О.П., Алєксєєнко А.С., Юрченко Ю.О. (НМетАУ, г. Дніпропетровськ) МОДИФІКУВАННЯ ТА ЛЕГУВАННЯ ВАЛКОВОГО ЧАВУНУ
Іванова О.С., Лисюк Р.О., Рибак В.М. (НТУУ «КПІ», м. Київ) МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПОВЕРХНЕВОГО НАТЯГУ ФЛЮСІВ ЕШП
Іванова О.С., Сєдов М.П., Рибак В.М. (НТУУ «КПІ», м. Київ) КОМП'ЮТЕРНА МОДЕЛЬ ЕЛЕКТРОШЛАКОВОЇ ТИГЕЛЬНОЇ ПЛАВКИ НА РІДКОМУ СТАРТІ
Іванченко Д.В., Кадигроб С.В. (НТУУ «КПІ», м. Київ) ОПТИМАЛЬНІ ПАРАМЕТРИ МОДИФІКУВАННЯ АЛЮМІНІЄВО-КРЕМНІЄВОГО ЛИВАРНОГО СПЛАВУ АК5М ЦИРКОНІЄМ, ВВЕДЕНИМ ІЗ ФТОРИДУ 6.
Каглинський О.Є., Несін В.В. (ІСТЕ СБУ, м. Київ) СПЕЦИФІЧНА ДІЯ ЕЛЕКТРОГРАФІЧНОГО МАРКУВАННЯ ТА КОНТРОЛЮ ТВЕРДОСТІ МАТЕРІАЛУ Р6М5 СПЕЦІАЛЬНИХ ФРЕЗ СКЛАДНОГО ПРОФІЛЮ
Калюжний П.Б. (СНУ ім. В. Даля, м. Сєвєродонецьк) ОДЕРЖАННЯ ВИЛИВКІВ ЛИТТЯМ ЗА МОДЕЛЯМИ, ЩО ГАЗИФІКУЮТЬСЯ, З АЕРОДИНАМІЧНИМ ПЕРЕМІЩЕННЯМ ФОРМУВАЛЬНОГО МАТЕРІАЛУ У
КОНТЕЙНЕРІ
, , · · · · · · · · · · · · · · ·

нее практика показала ограниченность схемы испытаний по диагонали отпечатка. Но метод не позволяет провести комплексную оценку состояния ПС. В связи с этим значительный интерес представляет анализ динамических эффектов контактного взаимодействия разработанным трибоспектральным (склерометрии) методом. Эффект изменения динамических характеристик фрикционного контакта был отмечен В.В. Запорожцем.

Трибоспектральный метод микромеханических испытаний, разработанный и внедрённый в 1960-х гг. в лаборатории КИИГА под руководством проф. В.В. Запорожца, базируется на непрерывной регистрации двух составляющих сопротивления движению индентора по поверхности с заданной нагрузкой. Выбор склерометрии основан на качественном подобии напряжённо-деформированного состояния и масштабного уровня повреждений при трении и деформации поверхности индентором.

Метод металлографии позволяет производить: количественный анализ изображения; анализ неметаллических включений; анализ пористости; анализ зёренной структуры; фазовый анализ; регистрацию в динамике процессов разрушения и трещинообразования; построение трёхмерной яркостной модели поверхности; прицельный «укол» в необходимом месте поверхности, при этом наблюдая за изображением на экране монитора.

Метод топографии основан на сканировании поверхности индентором при минимальной нагрузке (около 0,1 г) с последующей обработкой профилограмм и позволяет: регистрировать параметры шероховатости поверхности; строить трёхмерный профиль поверхности.

Максимально на экран монитора за один сеанс можно выводить 16 диаграмм внедрения, которые в автоматизированном режиме можно сглаживать, усреднять, аппроксимировать, сдвигать, вычитать и сравнивать с теоретической кривой нагружения. Для пользователя предусмотрена возможность введения разработанным математическиграфическим редактором формул расчёта параметров индентирования и построения графиков, полученных на основании собственных разработок. Такой подход предусматривает гибкость прибора «Микрон-гамма-9» как нового инструмента для исследования физикомеханических свойств материалов.

Зеленый Б.Г. (ФТИМС НАН Украины, г. Киев) ВЛИЯНИЕ ТЕРМОВРЕМЕННОЙ ОБРАБОТКИ И МОДИФИЦИРОВАНИЯ НА ГАЗОНАСЫЩЕННОСТЬ ЧУГУНА

Степень газонасыщенности сплава оказывает существенное влияние на его затвердевание и структурообразование, что приводит к изменению физико-механических и эксплуатационных свойств отливок. При выплавке чугуна на основе стальных отходов весьма существенное влияние на содержание газов оказывает окисленность и загрязнённость металлоотходов (стальной высечки, стружки и др.), интенсивность перемешивания расплава в ванне печи, состав карбюризатора, температурно-временные режимы плавки и перегрева. Общее газосодержание чугуна, выплавленного из металлоотходов, соизмеримо с газосодержанием чугуна, выплавленного из традиционных шихтовых материалов, однако абсолютное количество отдельных газов различно: в чугуне, полученном из металлоотходов, в 1,5...2,0 раза меньше кислорода и относительно больше азота и водорода.

Исследовали влияние температуры и времени выдержки расплава, количества и состава ферросплавов и комплексных модификаторов на изменение содержания кислорода и азота в чугуне при плавке в индукционной печи высокой частоты ИСТ-06 и дуговой печи ДСП-1,5 с основной футеровкой. Для сфероидизирующего модифицирования применяли модификаторы ЖКМК2, ЖКМК2Р, а также модификаторы, содержащие в своем составе легирующие элементы (V, Mo, Ni, Ba).

Пробы для газового анализа отбирали из исходного чугуна, в процессе его изотермической выдержки (от 5 до 35 мин) и чугуна после модифицирования. Содержание газов определяли на установках производства фирм «Бальцерс» и «Хиреус», анализаторе TC-500 фирмы LECO.

Значительное изменение содержания газов в расплаве наблюдали при его изотермической выдержке в индукционной печи. Выдержка расплава в течение 35 мин при температуре 1400 °C привела к снижению содержания кислорода в чугуне на 20,2% и азота на 25,3%. Повышение температуры изотермической выдержки с 1400 °C до 1450 °C позволило увеличить дегазацию расплава в 1,5 раза по кислороду и 1,7 раза по азоту при одной и той же длительности выдержки (35 мин). Доводка химического состава исходного чугуна после науглераживания по содержанию кремния присадкой в расплав ферросилиция ФС75 повышает содержание кислорода в чугуне в 1,3...1,8 раза и почти не сказывается на газонасыщенности его азотом. Использование для этих целей силикокальция СК30 снижает содержание кислорода в 2,0...3,0 раза и азота в 1,4...1,6 раза.

Обработка чугуна, выплавленного на основе стальных отходов, сфероидизирующими модификаторами, содержащими кальций, магний, РЗМ, кремний, позволяет значительно уменьшить содержание газов. При расходе 3,0% модификатора снижение содержания кислорода составило 72,1%, азота — 65,7%. Обработка жидкого чугуна модификатором ЖКМК2Р, содержащим в своем составе 1,57% РЗМ, способствовала более глубокой дегазации расплава. Степень дегазации по кислороду составила 83,8%, по азоту 71,8% при таком же расходе модификатора.

Обработка чугуна модификатором ЖКМК уменьшает содержание газов в чугуне более, чем на 70%. Введение в состав модификаторов, в том числе содержащих легирующие элементы, редкоземельных металлов (цериевой группы) привело к усилению их раскисляющей способности. При этом обнаружили снижение содержания кислорода до 86,1%, а азота до 73%. Модифицирование чугуна комплексными лигатурами, содержащими легирующие элементы, уменьшает их дегазирующую способность на 13...15%, по сравнению с модификатором ЖКМК, что может быть вызвано увеличением растворимости газов (особенно азота) в легирующих элементах.

Золотоверх В.А.¹, Микитчик А.В.², Рудой Ю.Е.² (¹НТУУ «КПІ», м. Київ; ²МЦ ЕПТ ІЕЗ ім. Є.О. Патона, м. Київ) ДОСЛІДЖЕННЯ СТРУКТУРИ ТА ВЛАСТИВОСТЕЙ ДИФУЗІЙНОГО БАР'ЄРНОГО ШАРУ В ЖАРОСТІЙКОМУ ПОКРИТТІ NіAI, ОТРИМАНОМУ ПО ОДНОСТАДІЙНІЙ ЕЛЕКТРОННО-ПРОМЕНЕВІЙ ТЕХНОЛОГІЇ

Для захисту високотемпературних деталей сучасних газотурбінних двигунів (ГТД), виготовлених із жароміцних сплавів, широко застосовуються жаростійкі покриття. Постійне підвищення робочої температури ГТД вимагає розробки жаростійких покриттів з підвищеним ресурсом. Довговічність покриттів залежить від термічної стабільності системи покриття-підкладка. За високої температури матеріал покриття деградує за рахунок взаємодифузії основних хімічних елементів між підкладкою і покриттям. Оптимальним рішенням проблеми зменшення взаємодифузії є нанесення бар'єрного шару на межі жароміцного сплаву з жаростійким покриттям.

Бар'єрний шар (як правило, з карбідів, боридів, нітридів або металів, таких, як хром, рутеній чи платина) наносять в окремому технологічному процесі перед осадженням жаростійкого покриття. Але доцільно об'єднати ці процеси в одному технологічному циклі.

Жаростійкі покриття на основі β-NiAl та бар'єрного шару хрому на межі з жароміцним сплавом ЭП-99 (ХН50МВКТЮР) наносились методом електронно-променевого випаровування та конденсації у вакуумі за один технологічний цикл. Мікроструктуру отриманих покриттів, а також їх товщину вивчали за допомогою растрового електронного мікроскопа