управління фазовим станом виливка. Перебудова ближнього порядку атомів при нагріванні розплаву до 800...850 °C може бути зафіксована лише після 30 хв. витримки в рідкому стані і подальшої швидкості охолодження близько 2 °C/с. Витримка менше 30 хв. не призводить до якісно нового структурного стану розплаву. Зменшення швидкості охолодження нижче вказаної межі сприяє дифузійному перерозподілу компонентів у процесі охолодження розплаву, зміни його структури. Внаслідок цього кристалізація здійснюється за механізмом, характерним для слабо перегрітої рідини.

Пригунова А.Г., Шейгам В.Ю., Белик В.И., Цир Т.Г., Вернидуб А.Г. (ФТИМС НАН Украины, г. Киев) ВИБРАЦИОННОЕ МОДИФИЦИРОВАНИЕ СПЛАВА АК5М2 С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ЖЕЛЕЗА

E-mail: onmlptima@ukr.net

В работе исследовали влияние продолжительности вибрации сплава АК5М2 с содержанием железа 1,2% на его механические свойства, плотность, микроструктуру и фазовый состав. Тигель со сплавом без рафинирования и модифицирования флюсами вибрировали при температуре 750 °C с частотой 50 Гц, амплитудой 0,5 мм на протяжении 80 мин. Через каждые 20 мин отбирали пробы для исследования микроструктуры и плотности образцов. Для этого использовали форму с диаметром полости 24 мм, высотой 44 мм, с толщиной стенки 2 мм. Скорость охлаждения образца в жидкотвердом состоянии составляла 2,0 °С/с, что соответствует средней скорости затвердевания алюминиевого сплава в металлической форме. Образцы для механических испытаний отливали после 20 мин и 80 мин вибрации. Результаты представлены на рис. 1.

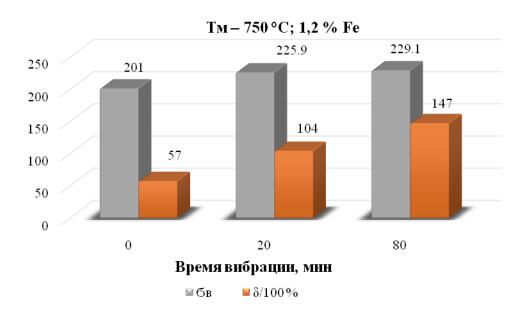


Рис. 1. Зависимость предела прочности на растяжение и относительного удлинения от продолжительности вибрационной обработки

Испытания на механические свойства показали (см. рис. 1), что кратковременная прочность образцов после 20 мин вибрации по сравнению с исходными образцами повысилась на 12,4%, пластичность в 1,8 раза. Через 80 мин вибрации прочность повысилась на 14%, а пластичность выросла в 2,58 раза.

При анализе плотности образцов выявлено, что после 20 мин вибрации расплава их плотность по сравнению с исходными отливками уменьшается с 2,7623 до 2,7533 г/см³. При увеличении продолжительности вибрации отмечена тенденция к повышению плотности. Падение плотности после первых 20 мин вибрации, наиболее вероятно, связано с всплыванием в начальный период вибрации наиболее крупных неметаллических включений, на поверхности которых адсорбирован водород, что приводит к некоторому возрастанию пористости.

Анализ микроструктуры свидетельствует, что при нагреве расплава с 1,2% железа до 750 °C и охлаждении со скоростью 2,0 °C/с основной железо-содержащей фазой является иглоподобный интерметаллид β–FeSiAl₅. Вибра-

ция сплава на протяжении 20 мин приводит к некоторому уменьшению количества и размера эвтектических кристаллов этой фазы. С увеличением времени вибрации до 40 мин объемная доля этого интерметаллида вновь несколько увеличивается, но уменьшается размер. Увеличивается степень дифференцировки алюминиево-кремниевой эвтектики, уменьшается дендритный параметр и размер дендритных ячеек твердого раствора алюминия.

Кроме того, экспериментально установлено, что в сплаве AK5M2 с массовой долей железа 1,2%, в котором при скорости охлаждения 2,0 °C/с преимущественно образуется иглоподобная β -фаза, являющаяся концентратором напряжений, вибрация в жидком состоянии приводит не только к модифицированию структуры, уменьшению содержания водорода, но и к изменению состава и морфологии железосодержащих интерметаллидов — образованию фазы α -(Fe,Mn) $_3$ Si $_2$ Al $_15$ в виде компактных первичных кристаллов, что положительно влияет на прочность и пластичность литого металла.

Пригунова А.Г., Шейгам В.Ю., Белик В.И., Цир Т.Г., Вернидуб А.Г. (ФТИМС НАН Украины, г. Киев) ВИБРАЦИОННАЯ ОБРАБОТКА АЛЮМИНИЕВОГО СПЛАВА С СОДЕЖАНИЕМ ЖЕЛЕЗА 2,2 %

E-mail: onmlptima@ukr.net

Использовали сплав АК5М2, в котором содержание железа увеличили до 2,2%. Вибрировали тигель с расплавом (частота 50 Гц, амплитуда 0,5 мм) при температурах 750, 700 и 650 °C на протяжении 20 и 40 мин. Микроструктуру металла исследовали на образцах, полученных со скоростью охлаждения 2,0 °C/с и 0,35 °C/с, что соответствует скорости охлаждения расплава в металлической и песчаной формах. Механические испытания проводили на литых образцах с диаметром рабочей части 10 мм. В табл. 1 представлены результаты механических свойств образцов, полученных после вибрации и выдержки в жидком состоянии при температурах 650 °C и 700 °C.